Acetaminophen-Induced Hepatotoxicity: Still an Important Issue

Isao Sumioka*†, Tatsuya Matsura† and Kazuo Yamada†
*Healthcare Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata 739-1195 and †Division of Medical Biochemistry, Department of Pathophysiological and Therapeutic Science, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503 Japan

Acetaminophen (APAP), the most commonly sold over-the-counter antipyretic analgesic, is generally considered harmless at therapeutic doses. However, APAP overdose causes severe and sometimes fatal hepatic damage in humans and experimental animals. In the United States and Europe, the incidence of liver injury due to APAP overdose, either with suicidal intent or by accident, is increasing. Recently, even in Japan, APAP has become more commonly used alone, especially in children with a view to prevention of Reye's syndrome. Thus, understanding the hepatotoxicity induced by APAP overdose is very important. To date, the mechanisms underlying APAP toxicity are considered to be associated with i) covalent binding to cellular macromolecules of a reactive intermediate metabolite of APAP produced by cytochrome P450 (CYP), N-acetyl-p-benzoquinoneimine, and ii) oxidative stress. APAP-induced hepatotoxicity is modified by associated risk factors such as alcohol abuse, fasting and concomitant drugs. Even therapeutic doses of APAP sometimes induce hepatic damage in the presence of these risk factors. N-Acetylcysteine (NAC), one of the cysteine prodrugs, is the most widely used for treating APAP-induced liver injury. In addition to NAC, CYP2E1 inhibitors and antioxidants may also serve as mechanism-based antidotes for APAP overdose. Moreover, inducers of heat shock protein (HSP) (in particular HSP25 and HSP70i) without any side effects might be new-type antidotes.

key words: acetaminophen; N-acetyl-p-benzoquinoneimine; cytochrome P450 2E1; hepatotoxicity; oxidative stress

Acetaminophen (N-acetyl-p-aminophenol, APAP), also referred to as paracetamol, is widely used as an analgesic and antipyretic drug throughout the world. In the United Kingdom, about 3.2×10^9 tablets of APAP are consumed every year, which is equivalent to an average of 55 tablets/person (Jones, 1998). As an over-the-counter drug, it can be readily obtained without prescription. Although APAP is generally harmless at therapeutic doses, overdose causes hepatotoxicity (Davidson and Eastham, 1966; Mitchell, 1988). In addition, susceptibility to APAP-induced hepatotoxicity is modified by various factors such as alcohol abuse, fasting and concomitant drug use. In Japan, APAP has usually been consumed as combination tablets or granules and rarely used alone except as a suppository. However, since recent reports that the use of salicylic acid in combination cold remedies is associated with
Reye’s syndrome in children with influenza or varicella infection (Belay et al., 1999), APAP has become more likely to be used alone in Japan and in other countries. Therefore, it is important that we review APAP toxicity, even though APAP-induced hepatic injury is not a newly emerging problem.

APAP-induced hepatotoxicity has been demonstrated in experimental animals as well as clinical cases. Mice and hamsters have been shown to be very sensitive to the hepatotoxic effects of APAP, developing a fulminant centrilobular necrosis similar to that observed in humans (Mitchell et al., 1973; Davis et al., 1974; Potter et al., 1974). Rats, rabbits and guinea pigs are, however, relatively resistant to APAP insult (Boyd and Bereczky, 1966; Madhu et al, 1992).

This review focuses on the mechanisms underlying APAP-induced hepatotoxicity, risk factors that increase susceptibility to the hepatotoxic effects of APAP, and protection against the toxicity.

Mechanisms of APAP-Induced Hepatotoxicity

Reactive intermediate metabolite of APAP

APAP is biotransformed and eliminated as nontoxic glucuronic acid and sulfate conjugates. Glucuronide is provided by UDP-glucuronic acid, and sulfation is dependent on phosphoadenylsulfate (Clements et al., 1984). Furthermore, the mixed-function oxidase system cytochrome P450 (CYP) participates in metabolizing a small proportion of APAP at therapeutic doses. The metabolism of APAP by CYP leads to the formation of N-acetyl-p-benzoquinoneimine (NAPQI), a highly reactive intermediate metabolite (Dahlin et al., 1984), which is normally detoxified by conjugation with reduced glutathione (GSH).

After high doses of APAP, the capacity for its removal by hepatic conjugation with glucuronide and sulfate is exceeded, and more of the reactive metabolite NAPQI is formed. Consequently, more NAPQI is conjugated with GSH, and when hepatic GSH is depleted, more NAPQI will bind covalently to cellular macromolecules (Jollow et al., 1973; Potter and Hinson, 1986). This is thought to lead to a loss of protein thiol groups (Moore et al., 1985; Kyle et al., 1990) and ultimately to cell death. In humans, CYP2E1, CYP1A2 and CYP3A4 have been thought to contribute to the metabolism of APAP to form NAPQI (Raucy et al., 1989; Patten et al., 1993; Thummel et al., 1993; Nelson, 1995). However, recent pharmacokinetics studies in human volunteers have demonstrated that involvement of CYP1A2 and CYP3A4 in NAPQI formation in vivo is much less than that of CYP2E1, as omeprazole (CYP1A2 inducer) and rifampicin (CYP3A4 inducer) treatment have no effect on the formation of NAPQI from APAP, whereas disulfiram (CYP2E1 inhibitor) treatment decreases NAPQI formation (Sarich et al., 1997; Manyike et al., 2000). Studies using CYP2E1 and CYP1A2 knockout mice have shown that the former, but not the latter, are more resistant to APAP-induced hepatotoxicity than wild-type animals (Lee et al., 1996; Tonge et al., 1998; Zaher et al., 1998), indicating that CYP2E1 is a primary contributor to APAP biotransformation among CYPs. Concerning the other CYP enzymes responsible for bioactivation of APAP, Hazai et al. (2002) recently reported that selective inhibition of CYP2A6 as well as CYP2E1 significantly decreased NAPQI formation in human liver microsomes, whereas CYP1A2 and CYP3A4 inhibition did not affect NAPQI production, suggesting that CYP2A6 may also be responsible for APAP bioactivation. However, the role of CYP2A6 in APAP metabolism in vivo remains to be established. Overall, it is feasible that the principal CYP responsible for APAP toxicity is CYP2E1.

Oxidative stress

Oxidative stress is also considered to be involved in the induction of hepatotoxicity by APAP. The one-electron oxidation of APAP by CYPs may generate reactive oxygen species (ROS). Hydrogen peroxide and superoxide are produced during metabolic activation of APAP in the mixed function oxidase system (Nordblom and Coon, 1977; Kuthan et al., 1978; de Vries, 1981). It has been reported that
Acetaminophen (APAP) overdose causes decreases in antioxidant enzyme activities such as catalase and glutathione peroxidase (Lores Arnaiz et al., 1995; Chen and Lin, 1997), levels of endogenous antioxidants such as α-tocopherol (α-Toc) and reduced forms of coenzyme Q₉ (CoQ₉H₂) and coenzyme Q₁₀ (CoQ₁₀H₂) (Amimoto et al., 1995; Sumioka et al., 1998), and the GSH/oxidized glutathione (GSSG) ratio (Jaeschke, 1990; Lores Arnaiz et al., 1995; Amimoto et al., 1995) in animal livers. These endogenous antioxidants, especially α-Toc, CoQ₉H₂ and CoQ₁₀H₂ scavenge lipid peroxyl radicals and consequently their own levels decrease (Matsura et al., 1992a, 1992b). Although there are arguments that lipid peroxidation may be a consequence rather than the cause of APAP-induced cell damage (Mitchell et al., 1981, 1984), our time course data obtained by quantitative analysis of biomarkers in mice revealed that the reduction in hepatic CoQ₉H₂ and CoQ₁₀H₂ levels preceded increases in the thiobarbituric acid-reactive substance (TBARS) content as an index of lipid peroxidation and plasma alanine aminotransferase (ALT) activity following APAP treatment (Amimoto et al., 1995). Moreover, pretreatment with oxidized coenzyme Q₁₀ (CoQ₁₀) resulted in an increase in hepatic CoQ₁₀H₂ and a marked reduction in hepatic TBARS content and plasma ALT activity without affecting hepatic GSH after APAP injection (Amimoto et al., 1995). Pretreatment with α-Toc also suppressed the increase in the hepatic TBARS content and plasma ALT activity without affecting the hepatic GSH level (Amimoto et al., 1995). These results strongly suggest that lipid peroxidation is involved in the mechanism of APAP-induced hepatic injury.

Recently, it has been reported that the formation of reactive nitrogen species such as peroxynitrite followed by extensive protein nitration is also associated with APAP-induced hepatotoxicity (Hinson et al., 1998; Knight et al., 2001).

Risk Factors

Even therapeutic doses of APAP sometimes induce hepatotoxicity in the presence of risk factors (such as alcohol abuse, fasting and drug interaction), which increase susceptibility to the hepatotoxic effects of APAP.

Alcohol

Interaction between alcohol and APAP has been recognized since the late 1970s (McClain et al., 1980). However, the APAP-alcohol interaction is very complicated, because acute and chronic alcohol intakes have opposite effects. Chronic alcohol intake increases hepatic CYP2E1 activity (Perrot et al., 1989) and decreases the GSH level (Lauterburg and Velez, 1988), especially the liver mitochondrial GSH level (Hirano et al., 1992; Zhao et al., 2002; Zhao and Slattery, 2002). These changes lead to an increase in NAPQI formation and a decrease in NAPQI detoxification, resulting in accumulation of NAPQI. Consequently, the severity of APAP-induced hepatotoxicity is enhanced by chronic alcohol intake (Sato et al., 1981a; Zimmerman and Maddrey, 1995; Schmidt et al., 2002), and even a therapeutic dose of APAP (generally considered to be nontoxic in nonalcoholics) may lead to hepatotoxicity. On the other hand, acute alcohol intake reduces the severity of APAP-induced hepatotoxicity (Rumack et al., 1981; Banda and Quart, 1982). In rats, this effect may be due to direct inhibition by alcohol of the biotransformation of APAP to NAPQI (Sato et al., 1981b, 1981c). Because alcohol itself is metabolized not only by alcohol dehydrogenase but also by CYP2E1 (microsomal ethanol oxidizing system; MEOS) and MEOS plays a major role when blood ethanol levels are high (Lieber, 1990), alcohol may competitively inhibit biotransformation of APAP to NAPQI. In these studies, APAP was administered when ethanol was still present in the blood circulation. Because ethanol is both a substrate and inhibitor of CYP2E1 (Lieber, 1997), the relative timing of APAP and ethanol ingestion is critical when attempting to elucidate the effect of short-term ethanol exposure on APAP metabolism. Recently, Thummel et al. (2000) reported, from studies in healthy adult volunteers, that the increase in NAPQI formation caused by ethanol occurred only when APAP was given after ethanol had cleared from the body.
Fasting

Fasting has also been considered a risk factor for APAP-induced hepatotoxicity. Whitcomb and Block (1994) reported a clinical study which found that APAP-induced hepatotoxicity after an overdose is more likely to be associated with recent fasting than recent alcohol use. In rats, fasting causes severe malnutrition, and the capacity of hepatic conjugation of APAP with glucuronide and sulfate decreases (Price et al., 1986, 1987). Consequently, more APAP is metabolized by CYPs, resulting in more NAPQI production. Although NAPQI is detoxified by conjugation with GSH, fasting also decreases hepatic GSH (Langley and Kelly, 1992; Vogt and Richie, 1993). Therefore, fasting may potentiate APAP-induced hepatotoxicity.

Drug interactions

Finally, long-term treatment with drugs that induce CYPs may increase the risk of APAP-induced liver damage. Carbamazepine, phenytoine, isoniazid and troglitazone are considered to induce CYPs, and therefore long-term use of these drugs enhances APAP-induced hepatotoxicity (Smith et al., 1986; Minton et al., 1988; Crippin, 1993; Li et al., 2002). In contrast, susceptibility to APAP liver injury is decreased by pretreatment with CYP inhibitors such as piperonyl butoxide and 4-methylpyrazone (Brady et al., 1991; Brennan et al., 1994; Kucukardali et al., 2002, Hazai et al., 2002).

Protection against APAP-Induced Hepatotoxicity

Cysteine prodrugs

GSH plays an important role in protecting the liver against APAP-induced hepatotoxicity, because NAPQI is detoxified by conjugation with GSH. Therefore, stimulation of hepatic GSH synthesis is feasible for prevention of APAP-induced hepatic injury. GSH, a tripeptide comprising glutamate, cysteine and glycine, is synthesized by a two-step reaction. The first step is catalyzed by γ-glutamylcysteine synthase to form γ-glutamylcysteine. In the second step, GSH synthase catalyzes the reaction between glycine and γ-glutamylcysteine to form GSH (Wang and Ballatori, 1998). The first step catalyzed by γ-glutamylcysteine synthase

Table 1. Protective effect of cysteine prodrugs on APAP-induced hepatotoxicity

<table>
<thead>
<tr>
<th>Compound</th>
<th>Experimental model</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Acetylcysteine</td>
<td>Mouse hepatocytes (in vitro)</td>
<td>Massey and Racz 1981</td>
</tr>
<tr>
<td></td>
<td>Rats (in vivo)</td>
<td>Lauterburg et al. 1983</td>
</tr>
<tr>
<td></td>
<td>Mice (in vivo)</td>
<td>Corcoran et al. 1985</td>
</tr>
<tr>
<td></td>
<td>Mice (in vivo)</td>
<td>Hjelle et al. 1986</td>
</tr>
<tr>
<td></td>
<td>Mice (in vivo)</td>
<td>Corcoran and Wong 1986</td>
</tr>
<tr>
<td>L-2-Oxothiazolidine-4-carboxylate</td>
<td>Mice (in vivo)</td>
<td>Hazelton et al. 1986</td>
</tr>
<tr>
<td>L-2-Methylthiazolidine-4-carboxylate</td>
<td>Mice (in vivo)</td>
<td>Lauterburg et al. 1983</td>
</tr>
<tr>
<td></td>
<td>Mice (in vivo)</td>
<td>Corcoran et al. 1985</td>
</tr>
<tr>
<td></td>
<td>Mice (in vivo)</td>
<td>Hjelle et al. 1986</td>
</tr>
<tr>
<td></td>
<td>Mice (in vivo)</td>
<td>Corcoran and Wong 1986</td>
</tr>
<tr>
<td>2-(Polyhydroxyalkyl)thiazolidine-4(R)-carboxylic acids</td>
<td>Mice (in vivo)</td>
<td>Roberts et al. 1987</td>
</tr>
<tr>
<td>Cystathionine</td>
<td>Mice (in vivo)</td>
<td>Kitamura et al. 1989</td>
</tr>
<tr>
<td>2-Methyl-thiazolidine-2,4-dicarboxylic acid</td>
<td>HepG2 cells (in vitro)</td>
<td>Wlodek and Rommelspacher 1997a</td>
</tr>
<tr>
<td></td>
<td>Mice (in vivo)</td>
<td>Wlodek and Rommelspacher 1997b</td>
</tr>
<tr>
<td></td>
<td>Mice (in vivo)</td>
<td>Roberts et al. 1992</td>
</tr>
<tr>
<td></td>
<td>Mice (in vivo)</td>
<td>Lucas et al. 2000</td>
</tr>
<tr>
<td>2(R,S)-n-Propythiazolidine-4(R)-carboxylic acid</td>
<td>Mice (in vivo)</td>
<td>Srinivasan et al. 2001</td>
</tr>
<tr>
<td>N,S-bis-Acetyl-L-cysteine</td>
<td>Mice (in vivo)</td>
<td>Crankshaw et al. 2002</td>
</tr>
</tbody>
</table>
Acetaminophen-induced hepatotoxicity (rate-limiting enzyme) is regulated by feedback inhibition of GSH (Richman and Meister, 1975). When GSH is consumed and the regulation of feedback inhibition is lost, the availability of cysteine as a precursor can become the limiting factor for GSH synthesis (Wang and Ballatori, 1998).

Various cysteine prodrugs have been reported to protect the liver from APAP-induced hepatotoxicity in experiments using animals or cultured cells (Table 1). The mechanism responsible for this protection may be metabolism of these prodrugs to L-cysteine, which is incorporated into hepatic GSH (Lauterburg et al., 1983; Corcoran and Wong, 1986; Hazelton et al., 1986; Roberts et al., 1987).

Among these cysteine prodrugs, N-acetylcysteine (NAC) is the most widely used antidote for APAP overdose in clinical practice. Intravenous administration of NAC to patients with APAP poisoning is effective for preventing APAP-induced hepatotoxicity (Prescott, 1981; Smilkstein et al., 1991). Prescott (1981) reported that NAC given intravenously 8 to 10 h after APAP ingestion was effective for preventing liver damage, hepatic failure, renal damage and death. Oral administration of NAC to patients with APAP poisoning was also shown to be effective for preventing liver damage (Rumack et al., 1981; Smilkstein et al., 1988). Analysis of the national multicenter study (1976 to 1985) in the United States reported by Smilkstein et al. (1988) demonstrated that oral treatment with NAC was protective regardless of the initial plasma APAP concentration when given within 8 h of APAP ingestion. They concluded that NAC treatment should be started within 8 h of APAP ingestion, but that treatment is still indicated at least as late as 24 h after ingestion. As shown in Fig. 1, we demonstrated that oral treatment of mice with NAC 1 h after APAP administration significantly suppressed the increase in plasma ALT activity as an index of liver injury. The most appropriate route and dose regimen of NAC for APAP-induced hepatotoxicity is still controversial. However, retrospective and prospective studies suggest that NAC treatment may be effective for fulminant liver failure after APAP overdose (Harrison et al., 1990; Keays et al., 1991).

![Fig. 1. Effect of SAMC or NAC treatment on APAP-induced liver injury in male ddY mice. APAP (500 mg/kg) was orally administered to mice, and then SAMC (100 mg/kg) or NAC (80 mg/kg) was given orally 1 h after APAP administration. The mice were anesthetized with diethyl ether and blood samples were taken from the right ventricle with a heparinized syringe 6 h after APAP. Plasma ALT activity was determined spectrophotometrically with a commercially available kit. The data are expressed as means ± SE for 4 to 5 animals. Plasma ALT activity in intact mice was 8 ± 1 IU/L (Note: these values are too small to visualize). *, ** Significantly different from the APAP + vehicle group (P < 0.05 and 0.01, respectively). Unpublished data, Sumioka et al.](image)

CYP2E1 inhibitors

The metabolism of APAP by CYP leads to the formation of NAPQI as discussed in the “Reactive intermediate metabolite of APAP” section. Therefore, CYP inhibitors may be effective for APAP-induced hepatotoxicity. Of the CYP enzymes, CYP2E1 plays the most important role in metabolizing APAP. Studies of CYP2E1 knockout mice have revealed that CYP2E1 is the most important factor in APAP biotransformation (Lee et al., 1996; Zaher et al., 1998).

We have demonstrated that S-allylmercapto-cysteine (SAMC), an organosulfur compound in aged garlic extract, protects mice from APAP-induced liver injury. Oral treatment with SAMC (100–200 mg/kg) suppressed the increase in plasma ALT activity (Fig. 1) and the hepatic necrosis after APAP overdose, and reduced APAP-induced mortality. The mechanism underlying this protection involved the suppression of CYP2E1 activity.
Diallyl sulfide and phenethyl isothiocyanate, compounds derived from garlic and cruciferous plants, respectively, have also been shown to inhibit CYP2E1 activity, and thereby to exhibit a protective effect against APAP-induced hepatotoxicity (Hu et al., 1996; Li et al., 1997). A synthetic compound, 2-(allylthio)pyradine, inhibited CYP2E1 mRNA and protein expression, resulting in prevention of APAP-induced liver damage (Kim et al., 1997). SAMC or diallyl sulfide treatment, not only before but also after APAP overdose, can protect animals from APAP-induced hepatotoxicity (Hu et al., 1996; Sumioka et al., 2001), suggesting that CYP2E1 inhibitor could serve as an antidote for APAP overdose.

CYP2E1 is also known to be a key bioactivator of various carcinogens, such as azoxymethane and N-nitrosodimethylamine (Yoo et al., 1990; Sohn et al., 2001). In this context, a CYP2E1 inhibitor could be a potential inhibitor of carcinogenesis by environmental carcinogens (Smith et al., 1995), and its clinical application could be extended from treatment of APAP-induced hepatotoxicity to treatment of all CYP2E1-related disorders.

Antioxidants

Oxidative stress followed by lipid peroxidation is also thought to contribute to the initiation or progression of APAP-induced hepatotoxicity (Wendel et al., 1979; Albano et al., 1983, 1985), as described in the “Oxidative stress” section.

We have demonstrated that intravenous pre-treatment with the lipid-soluble antioxidants, CoQ10 (5 mg/kg) and α-Toc (20 mg/kg), can limit hepatic injury produced by APAP overdose (Amimoto et al., 1995). CoQ10 is converted to CoQ10H2 in liver cells, and thereafter acts as an antioxidant (Matsura et al., 1992a, 1992b). These lipid-soluble antioxidants suppressed the increase in plasma ALT activity (Fig. 2) and hepatic TBARS level without affecting the hepatic GSH level. L-Ascorbic acid and its esters (Raghu and al., 1978; Lake et al., 1981; Mitra et al., 1991) and β-carotene (Baranowitz and Maderson, 1995) also exert protective action against APAP-induced hepatotoxicity. In addition, antioxidant enzymes such as superoxide dismutase and catalase protect the liver from APAP-induced injury (Kyle et al., 1987; Nakae et al., 1990). Iron is well known to play a major role in lipid peroxidation (Halliwell and Gutteridge, 1990). Sakaida et al. (1995) reported that deferoxamine, an iron chelator, can protect against APAP-induced hepatotoxicity.

Given that these antioxidants are effective when administered before APAP, taking APAP with them might be helpful for protecting against toxicity by misadventure, especially as antioxidants in nature, such as CoQ10, α-Toc, ascorbic acid and β-carotene, have few side effects.

Heat shock protein (HSP) inducers

HSP is ubiquitous in nature, and expressed in both prokaryotic and eukaryotic cells in response to a variety of stresses (Hendrick and Hartl, 1993). Initially, HSP was identified as a cellular response protein to hyperthermia, but HSP induction has also been observed after treatment of cells with a num-

Fig. 2. Effect of CoQ10 or α-Toc pretreatment on APAP-induced liver injury in male ICR mice. CoQ10 (5 mg/kg), α-Toc (20 mg/kg) or vehicle was intravenously injected into mice 12 h before intraperitoneal administration of APAP (400 mg/kg). The mice were anesthetized with diethyl ether and blood samples were taken from the right ventricle with a heparinized syringe 3 h after APAP. Plasma ALT activity was determined spectrophotometrically with a commercially available kit. The data are expressed as means ± SE for at least 5 animals. * Significantly different from the APAP + vehicle group (*P < 0.05). From Amimoto et al., 1995 with some modifications.
Acetaminophen-induced hepatotoxicity

The metabolic pathways of APAP, and the mechanisms of, and protection against, APAP-induced hepatotoxicity. +, stimulation; –, inhibition.

Fig. 3. The metabolic pathways of APAP, and the mechanisms of, and protection against, APAP-induced hepatotoxicity. +, stimulation; –, inhibition.

The expression of chemical toxicants. APAP-induced hepatotoxicity has been shown to increase the expression of HSP25 and HSP70i (Salminen et al., 1997a). It is generally accepted that the stimulus for increased HSP synthesis in response to stresses is the presence of non-native proteins (Ananthan et al., 1986; Goff and Goldberg, 1985). In the case of APAP-induced hepatotoxicity, covalent binding of NAPQI to hepatic macromolecules is thought to play a pivotal role in triggering HSP induction (Salminen et al., 1998). HSP70i together with HSP25 may function as a cytoprotective HSP to repair damaged protein in the necrotic lesion. The patterns of hepatic HSP25 and HSP70i induction are clearly different. The level of HSP70i increases initially after APAP overdose, and thereafter the level of HSP25 increases. The induction time after APAP overdose may differ with the severity of hepatotoxicity. For
example, at a lethal dose, HSP25 could be detected 24 h after APAP treatment (Sumioka et al., 2004), whereas, at a necrotic but not lethal dose, it was detectable 6 h after APAP treatment (Salminen et al., 1997a). Salminen et al. (1997b) reported that intraperitoneal pretreatment with amphetamine (15 mg/kg) in mice causes an acute rise in core body temperature to 40˚C for at least 1 h, increases the levels of HSP25 and HSP70i, and protects the liver from APAP-induced hepatotoxicity. We have reported that the level of expression of hepatic HSP25 may be a crucial determinant of the fate of mice exposed to APAP insult, because mortality following APAP overdose declined rapidly after the appearance of hepatic HSP25 (Sumioka et al., 2004). These findings suggest that HSP (HSP25 and 70i) inducer might be a new type of antidote for APAP overdose.

Conclusion

APAP overdose causes hepatotoxicity, which is sometimes fatal. This hepatotoxicity is initiated by the metabolic activation of APAP to NAPQI, a reactive metabolite. ROS generation and subsequent lipid peroxidation during APAP biotransformation is likely to exacerbate APAP insult. Even at therapeutic doses, APAP hepatotoxicity can occur when there are risk factors such as alcohol abuse, fasting and concomitant drug use. NAC, one of the cysteine prodrugs, has been traditionally used to prevent the development of hepatotoxicity following a significant overdose of APAP. In addition to NAC, HSP inducers as well as CYP2E1 inhibitors and antioxidants may also be antidotes for APAP overdose, on the basis of the mechanisms underlying APAP toxicity (Fig. 3).

References

17 Dahlin DC, Miwa GT, Lu AYH, Nelson SD. N-Acetyl-p-benzoquinone imine: a cytochrome P-450-mediated
Acetaminophen-induced hepatotoxicity

19 Davis DC, Potter WZ, Jollow DJ, Mitchell JR. Species differences in hepatic glutathione depletion, covalent binding and hepatic necrosis after acetaminophen. Life Sci 1974;14:2099–2109.
48 Li Y, Wang EJ, Chen L, Stein AP, Reuhl KR, Yang CS. Effects of phenethyl isothiocyanate on acetaminophen
79 Roberts JC, Nagasawa HT, Zera RT, Fricke RF, Goon
Acetaminophen-induced hepatotoxicity

Whitcomb DC, Block GD. Association of acetaminophen hepatotoxicity with fasting and ethanol use. JAMA 1994;272:1845–1850.

Włodek L, Rommelspacher H. 2-Methyl-thiazolidine-2,4-dicarboxylic acid as prodrug of l-cysteine. Protection

Received and accepted March 30, 2004

Corresponding author: Tatsuya Matsura, MD, PhD